
Physics – Grade 10

Prepared & Presented by: Mr. Mohamad Seif

Quiz Physics duration: 15 min

On an air table we print the trajectory of the center of an association of a puck.

The points are printed at regular equal intervals of time τ = 50ms.

- 1. Calculate the average speed between: $G_1 \& G_3$ and between $G_3 \& G_5$.
- 2. Calculate the instantaneous speed at G_2 , G_4 and at G_6 .
- 3. Give the characteristics of velocity vector at G_4 then represent it. scale of $1cm \rightarrow 0.275m/s$.

Physics duration: 15 min

- 4. Calculate the average acceleration between G_2 & G_4 Experience between G_4 & G_6 .
- 5. Calculate the instantaneous acceleration at G_3 and G_5 .

Quiz

- 6. What is the nature of motion of the puck? Justify your answer.
- 7. Give the characteristics of acceleration vector at G_3 then represent it. scale of $1cm \rightarrow 1m/s^2$.

VACADEMY

Physics

duration: 15 min

$$\tau = 50ms \div 1000 = 0.05s;$$

1. Calculate the average speed between: $G_1 \& G_3$; $G_3 \& G_5$

$$V_{1,3} = \frac{G_1 G_3}{t_3 - t_1}$$

$$V_{1,3} = \frac{G_1G_2 + G_2G_3}{3\tau - \tau}$$

$$V_{1,3} = \frac{(1.5 + 2) \times 10^{-2} \text{ CAD}}{2\tau} V_{1,3} = \frac{3.5 \times 10^{-2}}{2 \times 0.05}$$

$$V_{1,3} = 0.35m / s$$

Physics

duration: 15 min

$$\tau = 50ms \div 1000 = 0.05s;$$

1. Calculate the average speed between: $G_1 \& G_3$; $G_3 \& G_5$

$$V_{3,5} = \frac{G_3 G_5}{t_5 - t_3}$$

$$V_{3,5} = \frac{G_3G_4 + G_4G_5}{5\tau - 3\tau}$$

$$V_{3,5} = \frac{(2.5+3) \times 10^{-2}}{2\tau} CAD > V_{3,5} = \frac{5.5 \times 10^{-2}}{2 \times 0.05}$$

$$V_{3.5} = 0.55m / s$$

$$\tau = 0.05s;$$

2. Calculate the instantaneous speed at G_2 , G_4 and at G_6 .

$$V_2 = \frac{G_1 G_3}{3\tau - \tau}$$

$$\boldsymbol{V_2} = \frac{\boldsymbol{G_1 G_2} + \boldsymbol{G_2 G_3}}{2\tau}$$

$$V_2 = \frac{(1.5 + 2) \times 10^{-2}}{2 \times 0.05}$$

$$V_2 = 0.35m / s$$

Physics

duration: 15 min

$$\tau = 0.05s;$$

2. Calculate the instantaneous speed at G_2 , G_4 and at G_6 .

$$V_4 = \frac{G_3G_5}{t_5 - t_3}$$

$$V_4 = \frac{G_3 G_4 + G_4 G_5}{5\tau - 3\tau}$$

$$V_4 = \frac{(2.5+3) \times 10^{-2}}{2\tau} ACD$$

$$V_4 = \frac{5.5 \times 10^{-2}}{2 \times 0.05}$$

$$V_4 = 0.55m / s$$

Physics

duration: 15 min

$$\tau = 0.05s;$$

2. Calculate the instantaneous speed at G_2 , G_4 and at G_6 .

$$V_6 = \frac{G_5 G_7}{t_7 - t_5}$$

$$V_6 = \frac{G_5G_6 + G_6G_7}{7\tau - 5\tau}$$

$$V_6 = \frac{(3.5 + 4) \times 10^{-2}}{2\tau}$$

$$V_6 = 0.75m / s$$

Physics duration: 15 min

3. Give the characteristics of velocity vector at G_4 then represent it. scale of $1cm \rightarrow 0.275m/s$.

Origin:	point G ₄
Line of action:	Horizontal
Direction:	To Right _
Magnitude:	$V_4 = 0.55m/s$

$$1cm \rightarrow 0.275m/s$$

$$x = ?? \rightarrow 0.55m/s$$

$$1cm \times 0.55m/s$$

$$x = \frac{1cm \times 0.55m/s}{0.275m/s}$$

x = 2cm

Physics

duration: 15 min

$$\tau = 0.05s$$
; $V_2 = 0.35m/s$; $V_4 = 0.55m/s$; $V_6 = 0.75m/s$

4. Calculate the average acceleration between $G_2 \& G_4$ and between $G_4 \& G_6$.

$$a_{2,4} = \frac{V_4 - V_2}{t_4 - t_2} \implies a_{2,4} = \frac{V_4 - V_2}{4\tau - 2\tau} \implies a_{2,4} = \frac{V_4 - V_2}{2\tau}$$

$$a_{2,4} = \frac{0.55 - 0.35}{2 \times 0.05} \implies a_{2,4} = \frac{0.2}{0.1} \implies a_{2,4} = 2m / s^2$$

Physics

duration: 15 min

$$\tau = 0.05s$$
; $V_2 = 0.35m/s$; $V_4 = 0.55m/s$; $V_6 = 0.75m/s$

4. Calculate the average acceleration between G_2 & G_4 and between G_4 & G_6 .

$$a_{4,6} = \frac{V_6 - V_4}{t_6 - t_4} \implies a_{4,6} = \frac{V_6 - V_4}{6\tau - 4\tau} \implies a_{4,6} = \frac{V_6 - V_4}{2\tau}$$

$$a_{4,6} = \frac{0.75 - 0.55}{2 \times 0.05}$$
 \Rightarrow $a_{4,6} = \frac{0.2}{0.1}$ \Rightarrow $a_{4,6} = 2m / s^2$

Physics duration: 15 min

$$\tau = 0.05s$$
; $V_2 = 0.35m/s$; $V_4 = 0.55m/s$; $V_6 = 0.75m/s$

Calculate the instantaneous acceleration at G_3 and at G_5 .

$$a_3 = \frac{V_4 - V_2}{t_4 - t_2}$$
 \Rightarrow $a_3 = \frac{V_4 - V_2}{4\tau - 2\tau}$ \Rightarrow $a_3 = \frac{V_4 - V_2}{2\tau}$

$$a_3 = \frac{0.55 - 0.35}{2 \times 0.05}$$
 $\Rightarrow a_3 = \frac{0.2}{0.1}$ $\Rightarrow a_3 = 2m / s^2$

Physics duration: 15 min

$$\tau = 0.05s$$
; $V_2 = 0.35m/s$; $V_4 = 0.55m/s$; $V_6 = 0.75m/s$

Calculate the instantaneous acceleration at G_3 and at G_5 .

$$a_5 = \frac{V_6 - V_4}{t_6 - t_4} \implies a_5 = \frac{V_6 - V_4}{6\tau - 4\tau} \implies a_5 = \frac{V_6 - V_4}{2\tau}$$

$$a_5 = \frac{0.75 - 0.55}{2 \times 0.05}$$
 $\Rightarrow a_5 = \frac{0.2}{0.1}$ $\Rightarrow a_5 = \frac{2m}{s^2}$

Quiz Physics duration: 15 min

$$\tau = 0.05s$$
; $V_2 = 0.35m/s$; $V_4 = 0.55m/s$; $V_6 = 0.75m/s$

6. What is the nature of motion of the puck? Justify your answer.

Because $a = 2m / s^2 > 0$ then the motion is accelerated.

Be Smart ACADEMY

Physics duration: 15 min

$$\tau = 0.05s$$
; $V_2 = 0.35m/s$; $V_4 = 0.55m/s$; $V_6 = 0.75m/s$

7. Give the characteristics of acceleration vector at G_3 then represent it. scale of $1cm \rightarrow 1m/s^2$.

$G_1 \qquad G_2 \ 2cm$	$G_3 \geq .5cmG_4$ 3cm G_5	5 3.5cm G ₆ 4cm G ₇
1.5 <i>cm</i>	113	$1cm \rightarrow 1 m/s^2$
Origin:	point G ₃	$x = ?? \rightarrow 2m/s^2$
Line of action:	Horizontal	
Direction:	To the Right	$x = \frac{1cm \times 2m/2}{1m/s^2}$
Magnitude:	$a_3 = 2 m/s^2$	•
magnitude.	<i>a</i> ₃ – 2 nc/ 5	x = 2cm

